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Experimental or numerical data in turbulence are invariably obtained at finite
Reynolds numbers whereas theories of turbulence correspond to infinitely large
Reynolds numbers. A proper merger of the two approaches is possible only if
corrections for finite Reynolds numbers can be quantified. This paper heuristically
considers examples in two classes of finite-Reynolds-number effects. Expansions in
terms of logarithms of appropriate variables are shown to yield results in agreement
with experimental and numerical data in the following instances: the third-order
structure function in isotropic turbulence, the mixed-order structure function for the
passive scalar and the Reynolds shear stress around its maximum point. Results
suggestive of expansions in terms of the inverse logarithm of the Reynolds number,
also motivated by experimental data, concern the tendency for turbulent structures
to cluster along a line of observation and (more speculatively) for the longitudinal
velocity derivative to become singular at some finite Reynolds number. We suggest
an elementary hydrodynamical process that may provide a physical basis for the
expansions considered here, but note that the formal justification remains tantalizingly
unclear.

1. Introduction
If there is a unique state of turbulence at infinitely high Reynolds number, the

question arises as to how to discern its properties from experiments and simulations
at finite Reynolds numbers. The successful history of critical phenomena can be
thought to be due to a powerful interplay between experiments on the one hand
and, on the other hand, theories that accounted for the ‘finite’ effects (such as due to
finite size and finite ‘distances’ away from the critical point). In turbulence, we should
admit to knowing no formal way of inferring the right expansions around the infinite-
Reynolds-number state, but offer here a few suggestive examples where logarithmic
or inverse logarithmic expansions can be given reasonable justification and seem to
play a constructive role – in so far as they allow us to obtain some new results and
organize existing data more systematically. Logarithmic expansions do arise in field
theory, and their appropriateness can be established there by partial resummations
but these tools do not work for turbulence. The only past instances where inverse
logarithmic expansions were employed in turbulence seem to be those in Barenblatt
(1993), Barenblatt & Goldenfeld (1995), Barenblatt, Chorin & Prostokishin (1997),
Castaing, Gagne & Hopfinger (1990) and Dubrulle (1996). We shall not duplicate the
examples that these authors have ably discussed, but examine other instances after
introducing each of them briefly in the following sections.
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Figure 1. A qualitative sketch of the Kolmogorov function −〈�u3
r 〉/〈ε〉r , in terms of the

scale separation r .

The next two sections deal with logarithmic expansions: § 2 considers the
Kolmogorov and Yaglom laws in isotropic turbulence, while § 3 considers wall-
bounded flows. Sections 4 and 5 consider respectively inverse logarithmic expansions
for the clustering exponents of turbulent structures along an axis of intersection, and
for the flatness factor of velocity derivatives. In each case, results of these expansions
are compared with data from experiments and direct numerical simulations (DNS).
Section 6 discusses physical mechanisms in possible support of log-expansions in
turbulence.

2. Results for the inertial range of isotropic turbulence
We restrict attention to stationary isotropic turbulence without concerning ourselves

with the effects of shear, though we expect the results to hold for shear flows as well.

2.1. The Kolmogorov law in isotropic turbulence

The intermediate scales between the large scale L and the dissipation (or Kolmogorov)
scale η is called the inertial range. The inertial range of scales is associated with the
4/5ths law of Kolmogorov (1941) which states that〈

�u3
r

〉
= − 4

5
〈ε〉r. (2.1)

Here, �ur ≡ u(x + r) − u(x) is the longitudinal velocity increment, u is the velocity
component in the direction x, and 〈ε〉 is the average of the energy dissipation rate,
ε. The Kolmogorov law has a special status in turbulence as it is exact – since it is
derived from the Navier–Stokes equations subject only to the asymptotic requirement
of ‘sufficiently high’ Reynolds number.

The qualitative behaviour of 〈�u3
r 〉, called the third-order structure function, across

the entire range of scales is shown in figure 1. The part labelled (i) is obtained by
a Taylor expansion in the limit of r → 0, and that labelled (iii) corresponds to the
region of constant energy flux where the Kolmogorov law is valid. Part (iv) depends
on the properties of large scales of the flow. Very little is known about the form of the
part labelled (ii), although there exists an interpolation formula for the corresponding
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region in even moments (Batchelor 1951; Stolovitzky, Sreenivasan & Juneja 1993).
The part (iii) corresponding to (2.1) is expected to appear at high Reynolds numbers
and become more extensive with increasing Reynolds number. Experimentally, there
are claims that part (iii) appears even at modest Reynolds numbers but that its
enlargement is very slow in Reynolds number – certainly slower than the growth of
the ratio between integral and Kolmogorov scales.

To analyse the behaviour at finite Reynolds numbers, consider the Navier–Stokes
equations for a viscous incompressible fluid with random force f (x, t), given by

∂ui

∂t
+ uj

∂ui

∂xj

= − 1

ρ

∂p

∂xi

+ ν
∂2ui

∂x2
j

+ fi(x, t), (2.2a)

∂ui

∂xi

= 0, (2.2b)

where ν is kinematic viscosity and ρ is the fluid density. Since the potential part of the
external force can be included in the pressure gradient, the force can be assumed to be
solenoidal. To simplify considerations below, f will be assumed to be Gaussian with
zero mean and a rapidly oscillating character, or a δ-correlation in time (Kraichnan
1968). Such fields are defined completely by their second-rank correlation tensor

〈fi(x + r, t + τ )fj (x, t)〉Fij (r)δ(τ ). (2.3)

Novikov (1965) used (2.2) and (2.3) to show that the second- and third-order
longitudinal structure functions are related by the equation

S3 = 6ν
dS2

dr
− 2

r4

∫ r

0

x4Fii(x) dx, (2.4)

where Sn ≡ 〈�un
r 〉. Novikov also showed that

Fii(0) = 2〈ε〉. (2.5)

Thus, Fii corresponds to an external energy input rate, an assertion that is also
supported by Novikov’s relation 〈fi(x, t)vj (x ′, t)〉 = 1

2
Fij (x − x′)).

For r � L, it can be shown readily from (2.4) and (2.5) (see Novikov 1965) that

S3 � 6ν
dS2

dr
− 4

5
〈ε〉r. (2.6)

Without the viscous term, this is indeed Kolmogorov’s 4/5ths law. Kolmogorov
obtained the result without assumptions on the nature of forcing, but our point is
that the formalism, which we use below, is consistent with the exact result.

Let us rewrite (2.4) formally as

S3 = − 2

r4

∫ r

0

x4F̃ (x) dx, (2.7)

where we define the generalized energy input rate as

F̃ (x) ≡ Fii(x) − 3ν

x4

d(x4dS2/dx)

dx
. (2.8)

Assuming the existence of a local maximum of the generalized energy input rate,
i.e. a local maximum of F̃ (x) at x = xm (where η < xm < L), let us expand it in terms
of the logarithm of the relative distance from xm:

F̃ (x) = F̃ (xm) − a1(ln(x/xm))2 + · · · + an−1(ln(x/xm))n + · · · , (2.9)
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Figure 2. Normalized third-order structure function −�u3
r /〈ε〉r against log(r/η). The DNS

data are from Gotoh et al. (2002), Rλ = 125. The solid parabola corresponds to (2.12).

with a1 > 0. The novelty, even if it is obvious in hindsight, is the expansion in terms
of lnx instead of x. This seems reasonable because the scale-to-scale energy transfer
in turbulence is presumed to occur in logarithmically equal intervals.

Retaining only the two first terms in the expansion (2.9):

F̃ (x) � F̃ (xm) − a1(ln(x/xm))2, (2.10)

we may rewrite (2.10) from dimensional considerations (see (2.5)) as

F̃ (x) � 2〈ε〉A[1 − B(ln(x/xm))2], (2.11)

where A and B are dimensionless constants. This form also emphasizes the physical
nature of F̃ as a generalized energy input rate. Substituting (2.11) into (2.7) we obtain〈

�u3
r

〉
� − 4

5
〈ε〉r C[1 − D ln(r/rm))2], (2.12)

where the constants C = A/(1 − B/2), D = B/(1 − B/2), rm � 1.22xm. Comparing
(2.12) with the Kolmogorov law (2.1), it is appropriate to name r = rm the inertial
point. Equation (2.12) is the finite-Reynolds-number form of the third-order structure
function.

Figure 2 shows −〈�u3
r 〉/〈ε〉r against log(r/η) from the high-resolution DNS data

of Gotoh, Fukayama & Nakano (2002) for homogeneous, isotropic and steady three-
dimensional turbulence. The microscale Reynolds number Rλ = 125. A parabola
indicates the applicability of (2.12). Figure 3 shows a similar plot for Rλ = 460
(triangles) and for the wind tunnel data of Pearson, Krogstad & van de Water (2002),
obtained behind a grid for a close value of Rλ = 487. The parabola again shows
(2.12).

Figures 2 and 3 demonstrate that (2.12) is a good approximation for the main part
of S3 at small and moderately high Reynolds numbers. The constant C approaches
unity from below as Rλ increases, consistent with the Kolmogorov law; see figure 4
(the data point added from a high-Reynolds-number atmospheric boundary layer will
be discussed below). The 4/5ths region is barely discernible for Rλ ≈ 500 in some
flows, though this is not true for all of them. The Rλ-variations of the inertial point
rm (i.e. xm) and the constant D are shown in figures 5 and 6. These two variations are
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Figure 3. As in figure 2 but for Rλ = 460 (triangles) and for the wind-tunnel experiment of
Pearson et al. (2002) at a close value of Rλ = 487 (circles).
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Figure 4. Dependence of the dimensionless constant C in (2.12) on Rλ. Symbols: circles,
DNS of Donzis, Sreenivasan & Yeung (2005); diamonds, DNS of Gotoh et al. (2002); squares,
wind-tunnel measurements of Pearson et al. (2002); inverted triangles, measurements behind
an active grid of Kang, Chester & Meneveau (2003); upright triangles, measurements of
Sreenivasan & Dhruva (1998) in the atmospheric surface layer.

not independent. Indeed, one can calculate the second derivative of the generalized
energy input rate F̃ (x) at its maximum point xm, and estimate D in (2.12) as

D ∼ (rm/η)−4/3 ∼ R−0.97
λ . (2.13)

This estimate is close to the scaling observed in figure 5.
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Figure 5. Dependence of the normalized scale rm/η on Rλ in log-log scales. The best linear fit

indicates the scaling relation rm/η ∼ R
0.73±0.05
λ . Symbols have the same meaning as in figure 4.
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Figure 6. Dependence of the dimensionless constant D on Rλ in log-log scales. The best linear

fit indicates the scaling relation D ∼ R
−0.9±0.1
λ . Symbols have the same meaning as in figure 4.

What occurs at even higher Reynolds numbers is unclear because no data are
available in isotropic turbulence at substantially higher Rλ. The highest-Reynolds-
number data available today are from the simulations of Kaneda et al. (2003) but, for
them, the third-order structure function has not been calculated. In any case, since
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Figure 7. As in figure 2 but for an atmospheric experiment (Sreenivasan & Dhruva 1998) at
Rλ = 10 400. The solid curve corresponds to the expansion (2.9) up to the sixth order. The
dashed parabola is (2.12) (i.e. (2.9) with just two terms in the expansion).

those data were run for only two turnover times of the large scale, it is unclear if
S3 has become independent of initial conditions. Thus, the transition from (2.12) to
the Kolmogorov law S3 ≡ − 4

5
〈ε〉r can be discussed only by using data from shear

flows. This discussion will be somewhat speculative because the inevitably present
anisotropy may play some role (see, for example, the jet data of Gagne et al. 2004).

Figure 7 shows the data for atmospheric turbulence at Rλ = 10 340 (see Sreenivasan
& Dhruva (1998) for a description of the measurements). The dashed parabola,
representing (2.12), is a good fit to region (ii) and some part of (iii) of figure 1. (It is
from this fit that we obtained C shown in figure 3.) The solid curve, corresponding
to the approximation (2.9) up to the sixth order, fits the entire curve.

There are two possible interpretations. One is that, beyond a certain Rλ, the inertial
point ceases to vary with Rλ, the log terms vanish identically, and the classical inertial
range is recovered (Tabeling & Willaime 2002). The main change that would occur
beyond such a limiting Reynolds number is that the flat region (iii) increases in extent
and accumulates to the right of rm. In this scenario, only the region (ii) of figure 1,
up to and perhaps just beyond rm, would be fitted by (2.12). If so, the left edge of the
inertial range would correspond to r < rm (or xm), and the generalized energy input
rate F̃ (x) = F̃ (xm) = const to the right of xm. Alternatively, the good agreement with
the high-order expansion may suggest that the log expansion with additional terms is
valid even at very high Reynolds numbers, and the classical inertial range is attained
at much higher Reynolds numbers than ever considered before.

2.2. The Yaglom law for passive scalars

The equivalent of Kolmogorov’s law for passive scalars is due to Yaglom (Monin &
Yaglom 1975) and states that the mixed third-order structure function is given by〈

�ur�θ2
r

〉
= − 4

3
〈χ〉r, (2.14)
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where �θr ≡ θ(x + r) − θ(x) is the increment of the passive scalar θ over a scale
of size r and 〈χ〉 is the average value of the dissipation rate of scalar variance, χ .
This formula is valid in the so-called convective range of isotropic turbulence, which
is analogous to the inertial range for hydrodynamic turbulence. The experimental
situation of this fundamental law is similar to that of the 4/5ths law. On the one
hand, indications of this law appear for rather small values of Péclet number. On
the other hand, formation of the convective (inertial) range itself is quite slow with
increasing Péclet number. Since the qualitative characteristics of the Yaglom law are
similar to those of Kolmogorov’s, we will be brief in describing overlapping aspects.

The diffusion–convection equation for a passive scalar with random ‘force’ (source)
f (x, t) is

∂θ

∂t
+ uj

∂θ

∂xj

= κ
∂2θ

∂x2
j

+ f (x, t), (2.15)

where κ is the molecular diffusivity. As before, we assume Gaussianity and δ-
correlation in time for the forcing. The Gaussian forces with zero mean are defined
by their second-rank correlation

〈f (x + r, t + τ )f (x, t)〉 = F (r)δ(τ ). (2.16)

It is known that the mixed (longitudinal) structure function of third order

Suθ
3 (r) = 〈�ur (�θr )

2〉 (2.17)

is related to the second-order structure function Sθ
2 (r) = 〈(�θr )

2〉 by the equation

Suθ
3 = 2κ

dSθ
2

dr
− 2

r2

∫ r

0

x2F (x) dx. (2.18)

Let us rewrite (2.18) formally as

Suθ
3 = − 2

r2

∫ r

0

x2F̃ (x) dx, (2.19)

where we define generalized input rate for the variance of the passive scalar as

F̃ (x) ≡
(

F (x) − κ

x2

d
(
x2dSθ

2

/
dx

)
dx

)
. (2.20)

Let us now assume the existence of a local maximum of the generalized input rate,
i.e. a local maximum of F̃ (x) at x = xm (where η < xm < Lθ , η being the molecular
diffusion scale and Lθ the integral scale). From dimensional considerations

F̃ (x) = χψ(x/xm) (2.21)

where ψ(x/xm) is a dimensionless function. The inertial (convective) range is expected
to appear in the flow for sufficiently large Péclet numbers (Monin & Yaglom 1975).
We assume that ψ(x/xm) = ψ(1) = const in this range and that, for r within that
range, this particular value of ψ gives the main contribution to the integral (2.19).
From (2.19) follows the result that

Suθ
3 (r) = − 2

3
χψ(1)r. (2.22)

Taking into account the Yaglom law (2.14) for the convective range, we obtain

ψ(1) = 2. (2.23)



Logarithmic expansions in turbulence 485

1 1000
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

r/η

–�
∆

u∆
θ

2 �
/�

χ
�
r

10 100

Figure 8. Mixed third-order structure function Suθ
3 /χr against log r . The DNS data of

Watanabe & Gotoh (2004) (Pλ = 258) are shown as circles (η is the Kolmogorov scale).
The solid parabola corresponds to (2.26) with the first two terms.

If the ideal convective range has not yet appeared, we may use a logarithmic
expansion of the generalized input rate in a vicinity of its maximum:

F̃ (x) = F̃ (xm) − β1(ln(x/xm))2 + · · · + βn−1(ln(x/xm))n + · · · (2.24)

(with β1 > 0). Again, this logarithmic expansion is the key ingredient of our analysis.
It would be highly instructive if the logarithmic expansion could be derived at least
for a model of the passive scalar such as the Kraichnan model (see e.g. Falkovich,
Gawedzki & Vergassola 2001), but this is an unfinished task for now.

Taking into account (2.14) and (2.23), it is useful to rewrite (2.24) in the form

F̃ (x) � 2〈χ〉E[1 − F ((ln(x/xm))2 + · · ·], (2.25)

where E and F are dimensionless constants. Then substituting (2.25) into (2.19) and
assuming the symmetry of the Suθ

3 (r/rm) in a vicinity of its maximum position r = rm

we obtain

Suθ
3 (r) = − 4

3
〈χ〉r G[1 − H2(ln r/rm)2 + H4(ln r/rm)4 + · · ·], (2.26)

where rm ∝ xm, G(≈ 1), H2 and H4 are constants.
Figure 8 shows −Suθ

3 /χr against log r for the DNS data of homogeneous isotropic
turbulence described in Watanabe & Gotoh (2004), Péclet number Pλ = 258. The solid
parabola follows (2.26) with the first two terms (G � 1). Figure 9 shows analogous
data obtained for Pλ = 427, also from Watanabe & Gotoh (2004). The solid curve is
the best fit to (2.26) with the next term included (G � 0.96).

The discussion concerning the Kolmogorov law is relevant here as well. It is,
however, clear that one could approximate the measured Suθ

3 (r) in the ‘convective
range’ for any finite Péclet numbers by taking an increased number of terms in (2.25)
(and, consequently, in (2.26)). This approach could complement the idea of the ideal
convective range valid for Pλ = ∞.
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Figure 9. As in figure 8 but for Pλ = 427. The solid curve corresponds to the approximation
(2.26) with the first three terms.

3. Wall-bounded turbulence
Very close to the surface in wall-bounded flows such as pipes, channels and

boundary layers, the mean velocity varies linearly with the wall-normal distance
(e.g. Laufer 1954). Further away from the surface, the traditional understanding has
been that the variation is logarithmic (Prandtl 1952). In a series of publications (e.g.
Barenblatt 1993; Barenblatt et al. 1997), it has been proposed that power-law variation
is more appropriate.† Even further out in the flow, the so-called wake function (Coles
& Hirst 1968) is thought to codify experimental data. This section does not elucidate
any of this work directly, but we merely use logarithmic expansions to construct an
explicit expression for the mean velocity distribution near the position of maximum
Reynolds shear stress, ym.

Let us start with the exact equation

−〈uv〉+ = dU+/dy+ + (1 − y+/R+), (3.1)

valid for pipes and channel flows, in which we have used the standard notation: u

and v are velocity fluctuations in the streamwise and wall-normal directions x and
y, respectively, U (y) is the mean velocity in the direction x, R is the pipe radius or
the channel half-height, and the suffix + indicates normalization by wall variables
uτ and ν, which represent, respectively, the friction velocity and the (kinematic)
fluid viscosity. Elementary considerations show that the turbulent stress term −〈uv〉+

increases cubically with y+ very close to the wall; it changes rapidly into a form
that has not been studied carefully so far, before attaining its maximum value; it
subsequently drops off to zero as the flow centreline is approached further outwards.
The position of the maximum in the Reynolds shear stress, ym, is empirically known

† Power laws themselves have been around for much longer, but the framework of intermediate
asymptotics emphasized by this modern work is new.
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Figure 10. Plots of the Reynolds shear stress from the direct numerical simulations of a
channel flow (Iwamoto, Suzuki & Kasagi 2002), for four different Reynolds numbers, Re,
based on the bulk mean velocity and the width of the channel. The data have been fitted by
the two-term expansion (3.3). The fit is very good for y+ > 10.

(Sreenivasan & Sahay 1997) to obey

y+
m ≈ 1.87(R+)1/2. (3.2)

Such a fit has been proposed for some time (Long & Chen 1981; Sreenivasan 1987),
but the multiplicative constant has been slightly different in each work because of the
uncertainty associated with identifying ym from the measured data. The distribution
of −〈uv〉+ in pipe and channel flows has been obtained by numerically differentiating
the measured mean velocity distribution and using (3.1), and so (3.2) is not affected
by the inaccuracies of measuring the Reynolds shear stress.

Let us expand −〈uv〉+ around y+
m . Sreenivasan & Sahay (1997) have undertaken

this exercise already but had not appreciated the importance of expanding −〈uv〉+ in
terms of the logarithm of the distance from y+

m . This appears to be the appropriate
expansion because the number of hierarchical scales up to the height y+ in the wall
layer is of the order lny+. We may then write

−〈uv〉+ = k[1 − γ1(ln(y+/y+
m )2) + · · · + γn(ln(y+/y+

m )n) + · · ·]. (3.3)

Here, the unknown constants γ1 . . . γn are thought to be independent of the Reynolds
number, at least when it is high enough, and k → 1 as Re → ∞.

The two-term (parabolic) fit works well for all Reynolds numbers shown in figure 10,
roughly for y+ � 10. The low end of the fitted region more or less borders the buffer
region. Substituting (3.3) in (3.1), and retaining only the first two terms in the
expansion (3.3), we obtain

U+ = const + y+[g(y+) − (y+/2R+)], (3.4)
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Figure 11. A plot of U+/y+ +y+/d+ against y+ in semi-log scales (circles), for Re = 144 580,
where Re is based on the mean velocity and the pipe diameter. The data are from McKeon
et al. (2004). The solid parabola corresponds to equation (3.8).

where

g(y+) = p0 + p1[ln(y+/y1)]
2, (3.5)

with

p0 = 1 − k + kγ1, p1 = kγ1, y1 = ey+
m. (3.6)

The expression (3.4) is technically not expected to be valid all the way to the wall (see
figure 10), but we can be somewhat rough and impose the no-slip condition U+ = 0
at y+ = 0 to obtain

U+ = y+[g(y+) − y+/d+], (3.7)

where d+ = 2R+. In order to compare the last equation directly with experimental
data, it is useful to rewrite it in the form

U+/y+ + y+/d+ = g(y+) = p0 + p1[ln(y+/y1)]
2. (3.8)

If the present considerations are valid, the left-hand side of (3.8) must show a parabolic
variation with respect to y+ in logarithmic coordinates.

We show in figure 11 the recent data of McKeon et al. (2004) for one Reynolds
number. The solid parabola corresponds to (3.8). The agreement with the data is
excellent almost all the way to y+ of the order 10 towards the wall, and to y+ of the
order 1000 or more outwards – in fact, almost all the way to the centreline.

The following remarks seem useful. In the traditional picture, the Reynolds shear
stress attains a constant value of unity in an intermediate region, this being the
fundamental factor leading to the logarithmic law (in analogy with the Kolmogorov
‘inertial range’ picture considered in § 2; see e.g. Tennekes & Lumley 1972). If, on
the other hand, the maximum in −〈uv〉+ can indeed be identified at all Reynolds
numbers, this feature would suggest a second viscous-dominated region around y+

m ,
and has to be taken into account in some way. Such considerations introduce new
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elements in the asymptotic analysis of the wall-bounded flows, and were the subject of
Sreenivasan & Sahay (1997). Alternatively, it is possible that the relation (3.2) holds
only for ‘low’ Reynolds numbers in which case the present considerations hold only
that range of Reynolds numbers. It is possible that y+

m remains fixed beyond a certain
Reynolds number so the major influence of increasing the Reynolds number further
is simply to fill up more and more of the flat part of the Reynolds stress to the right
of y+

m . At present, we do not have sufficiently good data to choose one scenario over
the other.

4. The clustering phenomenon
4.1. The telegraph approximation and the cluster exponents

The nature of scaling laws in turbulence is still a challenging problem. Even the basic
cornerstone of the phenomenology of turbulence, namely Kolmogorov’s −5/3 spectral
form for locally isotropic and incompressible turbulence, has not been obtained from
the Navier–Stokes equations. Properties of intermittency are similarly beyond the
reach of theory at present (although considerable progress has been made for passive
scalars, see e.g. Falkovich et al. 2001). Intermittency consists of two aspects: different
events cluster together so their density in space is uneven, and events of highly
variable amplitudes are dispersed sporadically in space. In general, it has not been
possible to separate the clustering effect from the amplitude effect. Here, we suggest a
simplification using the so-called telegraph approximation for the velocity to separate
the two effects, and discuss how the inverse logarithmic expansion appears naturally
for dissipation intermittency.

The telegraph approximation is generated from the measured signal by setting the
fluctuation magnitudes to 1 or 0 depending on whether the magnitude exceeds the
mean value. Formally, for the fluctuation of measured quantity u(t) (with zero mean),
the telegraph approximation u(t) is constructed as

u∗(t) =
1

2

(
u(t)

|u(t)| + 1

)
. (4.1)

By definition, u∗ can equal either 1 and 0. Figure 12 illustrates the basic idea
schematically.

In turbulence, the energy dissipation (or, more precisely, a component of it) is
obtained by squaring the derivative of the velocity signal. As is well known (e.g.
Grant, Stewart & Moilliet 1962; Meneveau & Sreenivasan 1991), the result at high
Reynolds number is a highly intermittent quantity. For the telegraph approximation
of the velocity, however, the ‘derivative’ (interpreted as the limit of differences) has
a magnitude of ±1, situated at the shoulders of the pulses, and the equivalent of
the dissipation is then a train of spikes of unity magnitude. Since there is no change
in magnitude from one spike to another, the entire manifestation of intermittency
is due to the tendency of the spikes to cluster together. This addresses one part of
intermittency without involving the amplitude variability.†

† Another reason for the interest in the telegraph approximation is that it could provide a
motivation for using symbolic dynamics to study Navier–Stokes equations. If some rigorous results
could be derived by this means, one would then be able to make a more direct connection between
the equations and the scaling properties to be discussed in this section. A more detailed discussion
of these issues will be published separately.
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Figure 12. Schematic of the velocity fluctuations signal and its telegraph approximation.
The bottom figure shows the ‘derivative’ of the telegraph approximation.

In particular, let us construct, as is common for the energy dissipation, a running
average within a time interval τ of the number of spikes generated from the telegraph
signal; this quantity is simply equal to Nτ , which is the average number of zero-
crossing points in the interval τ . Let us denote fluctuations of the running average by
N ′

τ = Nτ − 〈Nτ 〉, where the brackets mean long-time average. We now inquire about
the scaling of the variance – that is, the Reynolds-number variation of the cluster
exponent µ∗ in the power-law relation

〈N ′2
τ 〉1/2 ∼ τµ∗

. (4.2)

The exponents for 〈N ′q
τ 〉1/q will also be µ∗ for all q because there is no amplitude vari-

ability in the telegraph approximation. (This has been checked empirically as well.)

4.2. Inverse logarithmic expansion

Data analysis has been performed using velocity signals measured at several Reynolds
numbers and the cluster exponents have been obtained. After having experimented
with different forms of variations with the microscale Reynolds number Rλ, we found
that the best fit was obtained when the data were correlated with ln Rλ. The first two
terms in the expansion

µ∗(ln Rλ) = q0 +
q1

lnRλ

+
q2

(lnRλ)2
+ · · · (4.3)
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Figure 13. Cluster exponent µ∗ (circles) for the velocity signal at different values
of Reynolds number (200 < Rλ < 20 000) against 1/ ln Rλ.

agree very well with the calculated values of µ∗ for 200 < Rλ < 20 000. Figure 13
shows that the best linear fit is

µ∗(ln Rλ) � 0.1 +
3/2

lnRλ

, (4.4)

which means that

lim
Rλ→∞

µ∗ � 0.1. (4.5)

There is finite clustering effect even in the limit of infinite Reynolds number. Again,
lnRλ seems to be the appropriate expansion parameter because the number of steps
in the energy cascade is proportional to lnRλ. (In one interpretation (Sreenivasan &
Stolovitzky 1995), the number of ‘particles’ on which one can do statistical mechanics
is equal to log2Rλ.)

4.3. Clustering of passive scalar fluctuations

Clustering of small scales of passive scalar in turbulent flows can also be characterized
by a corresponding cluster exponent. The principal result, which will be stated without
evidence for the sake of brevity, is that the coefficients q0 and q1 in the corresponding
expansion for the cluster exponent are approximately 0.07 and 3/2, respectively. The
smaller value of q0, in comparison with that for velocity, suggests that there is a
greater tendency for scalar fluctuations to cluster together.

5. Flatness of the velocity derivative
Observations show that the turbulent velocity becomes ‘rougher’ with increasing

Reynolds number, but it is generally thought that the tendency to form singularities is
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Figure 14. Inverse flatness data (circles and crosses) against inverse lnRλ. The solid straight
line (the best fit) indicates the two-term expansion (5.1).

mitigated by the smoothing effects of viscosity. From an experimentalist’s perspective,
if the singularities occur at all, they should be observed in velocity gradients (or
combinations thereof), and statistical quantities such as the flatness (i.e. the normalized
fourth-order moment) of the so-called longitudinal velocity derivative must detect
them. We make a few remarks on this subject in the context of inverse logarithmic
expansions. The experimental data available a few years ago were collected by
Sreenivasan & Antonia (1997).

It is usually thought that the flatness increases as a power-law in Rλ, for Rλ > 100 or
so. This range of Rλ is thus thought to be fully developed. In reality, however, the data
do not confirm a flawless power law in any Reynolds-number range and are open to
different interpretations (e.g. Tabeling & Willaime 2002; Gylfason, Ayyalasomayajulu
& Warhaft 2004). A new interpretation is attempted below using an inverse log
expansion (for a few more details, see Sreenivasan & Bershadskii 2005).

5.1. Interpretation using logarithmic expansions

Figure 14 shows inverse flatness F −1 (from the local average fit of the data from
Sreenivasan & Antonia 1997) against 1/ln(Rλ) (circles). New data from wind tunnel
(Pearson et al. 2002) and atmospheric surface layer measurements (Sreenivasan &
Dhruva 1998) are added (crosses). The straight line shows the two-term approximation
of the inverse logarithmic expansion

F (x)−1 = q0 + q1x + · · · + qnx
n + · · · (5.1)

with

x = 1/ln(Rλ). (5.2)

This fit is good from Rλ ≈ 50 (which is on the order of the minimum Reynolds
number at which turbulence-like behaviour sets in (Sreenivasan 1984)) and describes
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Figure 15. The same as in figure 14 but in the usually used log-log scales. The solid curve is
‘critical’ approximation (5.3) and the dashed line the conventional power law.

all the measured data up to Rλ ≈ 20 000. The figure shows that q0 < 0, indicating the
possibility of a finite-Reynolds-number singularity of the flatness. In this situation, to
apply the expansion (5.1) as a Maclaurin series, one can do an analytic continuation
of the variable F −1 in the negative area defining F (0)−1 ≡ q0, dF −1/dx|x=0 ≡ q1,
etc. (In the theory of critical phenomena, analytic continuations are produced even
in the complex plane.) The linear approximation of the F (x)−1 results in critical-like
expression for

F (x) ∼ (x − xc)
−1 (5.3)

in a certain vicinity of the ‘critical’ point xc = −q0/q1.
Extrapolating this fit one can find the ‘critical’ value xc = ln R

(c)
λ � 12.6 ± 1.5, as

the intersection point of the fitting straight line with the horizontal axis. This gives
a ‘critical’ Reynolds number R

(c)
λ of about 300 000. While the error bar in 1/lnR

(c)
λ

seems reasonable, it translates to huge error bars of between 66 000 and 1 300 000 in
the value of R

(c)
λ itself.

A slightly different perspective on the topic is provided in figure 15, which compares
the smoothed data (circles) with the ‘critical’ approximation (5.3) (solid curve) as well
as the conventional power law used in log-log coordinates (dashed straight line). Even
though there is a slight suggestion that the data prefer the ‘critical’ line to the pure
power-law (towards the upper end of Rλ), one needs an order of magnitude higher Rλ

in order to determine unambiguously whether the data will follow the traditionally
expected power law or the critical behaviour. While such Reynolds numbers are
outside the present experimental capability – and also outside terrestrial experience –
the issue is of fundamental theoretical interest.

There is one possibility of testing this notion within our present capabilities. The
velocity measurements, from which the derivative flatness is computed, have been
made typically with a resolution on the order of the Kolmogorov scale. It is now
known (Sreenivasan 2004; Yakhot & Sreenivasan 2005) that the required resolution
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Figure 16. The vortex ring and its velocity.

becomes more stringent as the Reynolds number increases. There is some evidence
to suggest that the flatness measured with adequate resolution reveals a tendency to
curve upwards. If this tendency is shared by the higher-Rλ data, the evidence for the
critical scenario will be stronger. Adequately resolved flatness measurements at high
Rλ are therefore an urgent necessity.

6. Discussion
In this paper, we have discussed a few examples to illustrate the range of problems

for which logarithmic expansions are useful. To the evidence presented, one can
add other instances, e.g. those involving thermal convection. Considering the present
examples in conjunction with others in which log-expansions have already been
carried out (e.g. Castaing et al. 1990; Barenblatt & Goldenfeld 1995; Dubrulle 1996),
the totality of evidence appears strong. Yet all the evidence is empirical. It is therefore
useful to seek a logical explanation for the appearance of logarithmic expansions
applicable in diverse turbulence problems.

Thin vortex tubes (or filaments) are the ubiquitous hydrodynamical elements of
turbulent flows at high Reynolds numbers (Küchemann 1965; Saffman 1968; Chorin
1994). Therefore, it is natural to seek a generic property of vortex filaments to provide
the required physical mechanism. We examine their stability in three-dimensional
space, in particular the propensity of a linear vortex to develop ‘kinks’. To estimate
the velocity of such a kink, let us first recall (Batchelor 1967) that a ring vortex
propagates with a speed v that is related to its diameter λ and strength Γ through

v =
Γ

2πλ
ln

(
λ

2η

)
, (6.1)

where η is the radius of the core of the ring and λ/2η � 1 (see figure 16). If, for
instance, a linear vortex develops a kink with a radius of curvature λ/2, the velocity
perpendicular to the plane of the kink, generated by self-induction, can be calculated
using (6.1).

One can guess (see Saffman 1968) that in a turbulent environment, the most unstable
mode of a thin vortex tube of length L (integral scale) and radius η (Kolmogorov
scale), will be of the order of the Taylor microscale, λ. Then, the characteristic velocity
of the spatial scale λ can be estimated from (6.1). Noting that the Taylor-microscale
Reynolds number is defined as

Rλ =
v0λ

ν
, (6.2)
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r

Figure 17. Vortex filament instability and the wave packet of scale r .

where v0 is the root-mean-square value of a component of velocity, it appears that the
velocity that is more relevant (at least from the point of view of vortex instabilities)
for the spatial scale λ is not v0 but v given by (6.1). The corresponding effective
Reynolds number should be obtained by the renormalization of the characteristic
velocity in (6.2), as

R
eff
λ =

vλ

ν
∼ Γ

2πν
ln

(
λ

2η

)
. (6.3)

It can be readily shown from definitions that

λ

η
= G R

1/2
λ , (6.4)

where G = 151/4 � 2. Hence

R
eff
λ ∼ Γ

4πν
ln(Rλ). (6.5)

The strength Γ can be estimated as

Γ ∼ 2πvηη, (6.6)

where vη = ν/η is the velocity scale for the Kolmogorov scale η. Substituting (6.6)
into (6.5) we obtain

R
eff
λ ∼ lnRλ. (6.7)

Thus, for turbulence processes determined by vortex instabilities, the relevant
dimensionless characteristic is ln Rλ rather than Rλ. This is a plausible justification
for the relevance of expansions in terms of the inverse logarithm of the microscale
Reynolds number.

We now turn to the logarithmic expansions used in the first part of the paper,
where the finite-size corrections to the ideal scaling laws were considered as functions
of ln(r/rm). A plausible explanation for this procedure is as follows. In the finite-
size computations, the cut-off corrections from above to �ur arising from vortex
instabilities (see figure 17) can be calculated by the ‘local induction’ approximation to
the Biot-Savart formula (Batchelor 1967). This suggests that, at the level of the present
approximation, contributions to the velocity fluctuation in the immediate vicinity of
a given point on the filament, arising from distances r � η, can be neglected. The
cut-off from below is provided by the core radius η of the vortex. Then the dynamics
of the vortex filament obey the equation

dX
dt

=
Γ

4π

{
ln

(
r

η

)}
γ b, (6.8)

where X is the position vector of a point on the filament, γ is the local curvature,
and b is the unit binormal vector of the filament. In this approximation, since the
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dependence on r is exclusively determined by the logarithmic term in the right-hand
side of (6.8), a correction function to the turbulent velocity fluctuations, related to the
finite-size effects, is also a function of ln(r/η).

Let us now consider a finite-size correction function f (ln(r/η)) with its maximum at
r = rm (see § 2). This function can be rewritten as f (ln(r/η)) ≡ f (ln(r/rm)+ ln(rm/η)).
In the vicinity of the maximum, we have

ln
rm

η
� ln

r

rm

. (6.9)

Therefore we can effectively use a power series expansion in this vicinity:

f

(
ln

r

η

)
≡ f

(
ln

r

rm

+ln
rm

η

)
= a0 +a2

(
ln

r

rm

)2

+ · · ·+an

(
ln

r

rm

)n

+ · · · , (6.10)

where

a0 = f

(
ln

rm

η

)
, an =

1

n!

dnf (x)

dxn

∣∣∣∣
x=ln(rm/η)

.

That is, all turbulent processes – for which the instability of the vortex filaments
determines finite-size effects – can be expanded in terms of logarithmic power expan-
sions. Equation (6.9) provides a condition of effective applicability of such expansions.
Taking into account that the effective length of the vortex filament is ∼ L, one can
roughly estimate rm ∼ (Lη)1/2 ∼ R

3/4
λ η. This result is in agreement with the scaling

shown in figure 5.
In summary, we have argued here that, instead of expansions in terms of powers

of the Reynolds number or its inverse, those in terms of powers of the logarithm
of the Reynolds number or its inverse are more generic, at least in those instances
where vortex instabilities are involved. Since most turbulent processes are likely to
be related to such instabilities, it is reasonable to speculate that such expansions are
natural for turbulence theories. We have discussed a few instances where they have
proved to be useful, and there is little doubt that more are likely to be identified.

We thank T. Gotoh, K. Iwamoto, B. McKeon, C. Meneveau, B.R. Pearson and
P.K. Yeung for providing the data of their numerical simulations and experiments.
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